首页 | 本学科首页   官方微博 | 高级检索  
     

基于可见/近红外光谱技术的番茄叶片灰霉病检测研究
引用本文:吴迪,冯雷,张传清,何勇. 基于可见/近红外光谱技术的番茄叶片灰霉病检测研究[J]. 光谱学与光谱分析, 2007, 27(11): 2208-2211
作者姓名:吴迪  冯雷  张传清  何勇
作者单位:浙江大学生物系统工程与食品科学学院,浙江,杭州,310029;浙江大学农业与生物技术学院,浙江,杭州,310029
基金项目:国家自然科学基金 , 浙江省科技攻关项目 , 浙江省宁波市自然科学基金
摘    要:利用可见/近红外光谱技术对感染灰霉病的番茄叶片感染程度进行了检测。提出了主成分分析结合BP神经网络的数据处理方法。采用主成分分析进行数据的降维,减少了计算量,提高了建模精度。通过主成分分析中的载荷值,定性地分析了不同波段对病害程度检测的重要性。将得到的最主要的几个主成分输入BP神经网络进行建模,预测结果显示,当主成分数为8,隐含层结点数为11的时候,病害程度的检测模型对未知样本预测的相关系数达到0.930,SEP为0.068 7,模型具有良好的检测效果。说明基于光谱技术和化学计量学方法的灰霉病检测模型具有很好的检测能力,为光谱技术应用于病害检测提供了新的方法。

关 键 词:可见/近红外光谱  灰霉病  番茄  主成分分析  BP神经网络
文章编号:1000-0593(2007)11-2208-04
收稿时间:2006-06-28
修稿时间:2006-09-29

Study on the Detection of Gray Mold of Tomato Leave Based on Vis-Near Infrared Spectra
WU Di,FENG Lei,ZHANG Chuan-qing,HE Yong. Study on the Detection of Gray Mold of Tomato Leave Based on Vis-Near Infrared Spectra[J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2208-2211
Authors:WU Di  FENG Lei  ZHANG Chuan-qing  HE Yong
Affiliation:1. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, China2. College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
Abstract:Visible and near-infrared reflectance spectroscopy (Vis/NIRS) technique was applied to the detection of disease level of grey mold on tomato leave. Chemometrics was used to build the relationship between the reflectance spectra and disease level. In order to decrease the amount of calculation and improve the accuracy of the model, principal component analysis (PCA) was executed to reduce numerous wavebands into several principal components (PCs) as input variables of BP neural network. The loading value of PC1 was applied to qualitatively analyze which wavebands were more important for disease detection. Prediction results showed that when the number of primary PCs was 8 and the hidden nodes of BP neural network were 11, the detection performance of the model was good as correlation coefficient (r) was 0.930 while standard error of prediction (SEP) was 0.068 7. Thus, it is concluded that spectroscopy technology is an available technique for the detection of disease level of grey mold on tomato leave based on chemometrics used for data analysis.
Keywords:Near infrared spectroscopy  Grey mold  Tomato  Principal component analysis(PCA)  BP neural network(BPNNS)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号