首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical investigation of the binding of small molecules and the intramolecular agostic interaction at tungsten centers with carbonyl and phosphine ligands
Authors:Muckerman James T  Fujita Etsuko  Hoff Carl D  Kubas Gregory J
Institution:Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA. muckerma@bnl.gov
Abstract:The factors controlling both the binding of small molecules to several tungsten complexes and agostic bonding in the W(CO)3(PCy3)2 complex have been examined through B3LYP hybrid density functional theory and ab initio MP2 calculations with and without basis set superposition error (BSSE) corrections. This approach attempts to isolate insofar as possible the separate effects of intrinsic bonding interactions, electron induction by ligands, and steric hindrance and strain. An important conclusion from this study is that for bimolecular reactions, BSSE corrections must be included for quantitative predictions. There is a reasonably good correlation between the BSSE-corrected B3LYP and MP2 results for bond dissociation enthalpies (BDEs) of very small molecules (H2, N2, and CO), but generally B3LYP BDEs tend to be smaller than the corresponding MP2 values. In the few cases where a comparison with experimental data can be appropriately made, it appears that the BSSE-corrected MP2 BDEs are more reliable. Using N2 as a probe molecule, the strength of the agostic bond in W(CO)3(PCy3)2 has been examined by calculating the BDE of N2 in a series of tungsten complexes with increasing electron inducing effect without agostic bonding, then extrapolating the expected trend to the case of agostically bonded W(CO)3(PCy3)2. Comparison of the extrapolated value to the calculated BDE of W(CO)3(PCy3)2(N2) yields an estimated strength of the agostic bond of from 7 to 9 kcal mol-1. Approximately 5 kcal mol-1 of the interaction is assigned to the net agostic interaction associated with moving from a nonagostic local minimum configuration of the PCy3 ligands to the agostically bonded global minimum.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号