首页 | 本学科首页   官方微博 | 高级检索  
     


Time-gated fluorescence spectroscopy of porphyrin derivatives and aluminium phthalocyanine incorporated in vivo in a murine ascitic tumour model.
Authors:R Cubeddu  R Ramponi  P Taroni  G Canti
Affiliation:CEQSE-CNR, Istituto di Fisica del Politecnico, Milano, Italy.
Abstract:The effect of systemic administration on drug uptake at cellular level was evaluated using time-gated fluorescence spectroscopy performed on a murine ascitic tumour model. Mice bearing L1210 leukaemia were injected intraperitoneally or intravenously with 25 mg per kg body weight hematoporphyrin derivative (HpD), 12.5 mg per kg body weight photofrin II (PII), 25 or 5 mg per kg body weight disulphonated aluminium phthalocyanine (AlS2Pc). Every 2 h and for up to 22 or 30 h, mice were sacrificed, leukaemic cells extracted from the peritoneum, washed, and resuspended in buffer for fluorescence measurements. HpD and PII emission spectra were almost identical 12 h after intraperitoneal injection with main peaks at 630 nm and no appreciable changes afterwards. In the first 12 h, the PII fluorescence spectrum was constant, while in the case of HpD a shoulder at 615 nm was detectable. Similar fluorescence behaviour was observed after intravenous administration of porphyrin derivatives. These results seem to confirm that the tumour localizing fraction is the part actually retained by the cells. The AlS2Pc spectrum peaked at 685 nm and did not change in any of our experiments. AlS2Pc is incorporated more rapidly with respect to porphyrins, as was clearly observed in the case of intravenous administration, where the AlS2Pc fluorescence was readily detectable after 2 h, whereas the PII emission became apparent only after 4-6 h.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号