首页 | 本学科首页   官方微博 | 高级检索  
     


Interfacial properties of precipitate-based ion-selective electrodes : Rotating disk impedance measurements of the Ag2S/Ag (aqueous) interface
Authors:Rathbun K. Rhodes  Richard P. Buck
Affiliation:

William Rand Kenan, Jr. Laboratories of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514 U.S.A.

Abstract:Three-electrode rotating disk impedance measurements were made from 31.6 kHz to 0.0178 Hz on Ag2S/Ag+ (aqueous) and Ag2S/Ag systems. Membranes were prepared from materials precipitated in excess of silver or sulfide ions, and stoichiometric mixtures. Impedances were analyzed, as a function of rotation rate and bathing activities, to isolate bulk conductivities, internal diffusion, surface kinetic and dissolution/crystallization impedances. High-frequency bulk resistivities, R, varied by four with precipitation and pressing conditions. Resistivities were the same for solution and ohmic configurations for each preparation. For ohmic contacts, R and R(DC) were identical. Solution contact cells in 10-1 M and 10-2 M bathing silver ion solution gave identical frequency-dependent impedances which were independent of rotation rate. Thus, solution diffusional impedances and solution dependent surface kinetics were eliminated, and a finite Warburg, interior-Ag+-defect, diffusion impedance was indicated. Summation of bulk membrane and contact resistances, and this Warburg impedance served as a 'background' correction in analyzing dilute bathing solution interfacial impedances for surface effects. Corrected impedances in 10-3 –10-5 M AgNO3 showed solution diffusional behaviour combined with surface kinetic and dissolution impedances. An iterative linear least-squares method resolved these quantities. The surface resistance suggests a potential-dependent rate constant; dissolution time constants were solution-independent and smaller than those for solution diffusion. Thus, dissolution can be a rate-limiting step in establishment of steady-state potentials.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号