首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two-dimensional Hertzian contact problem with surface tension
Authors:JM Long  GF Wang  XQ Feng  SW Yu
Institution:1. Department of Engineering Mechanics, SVL, Xi’an Jiaotong University, Xi’an 710049, China;2. Department of Engineering Mechanics, AML, Tsinghua University, Beijing 100084, China
Abstract:In the present paper, we consider a two-dimensional contact problem of a rigid cylinder indenting on an elastic half space with surface tension. Based on the solution of a point force acting on a substrate with surface tension, we derive the singular integral equation of this problem. By using the Guass–Chebyshev quadrature formula, the integral equation is solved numerically to illuminate the influence of surface tension on the contact response. It is found that when the contact width is comparable with the ratio of surface tension to elastic modulus, surface tension significantly alters the pressure distribution in the contact region and the contact width. Compared to that of the classical Hertzian contact, the existence of surface tension decreases the displacements on the half plane and yields a continuous slope of normal stress and displacements across the contact fringe. In addition, it predicts the increase of hardness as the radius of indent cylinder decreasing. The obtained results are useful for the measurement of mechanical properties of materials based on the indentation technique.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号