首页 | 本学科首页   官方微博 | 高级检索  
     


Excess molar enthalpies of binary systems containing 2-octanone,hexanoic acid,or octanoic acid at T = 298.15 K
Authors:Wei-Chen Liao  Ho-mu Lin  Ming-Jer Lee
Affiliation:Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106-07, Taiwan
Abstract:An isothermal titration calorimeter was used to measure the excess molar enthalpies (HE) of six binary systems at T = 298.15 K under atmospheric pressure. The systems investigated include (1-hexanol + 2-octanone), (1-octanol + 2-octanone), (1-hexanol + octanoic acid), (1-hexanol + hexanoic acid), {N,N-dimethylformamide (DMF) + hexanoic acid}, and {dimethyl sulfoxide (DMSO) + hexanoic acid}. The values of excess molar enthalpies are all positive except for the DMSO- and the DMF-containing systems. In the 1-hexanol with hexanoic acid or octanoic acid systems, the maximum values of HE are located around the mole fraction of 0.4 of 1-hexanol, but the HE vary nearly symmetrically with composition for other four systems. In addition to the modified Redlich–Kister and the NRTL models, the Peng–Robinson (PR) and the Patel–Teja (PT) equations of state were used to correlate the excess molar enthalpy data. The modified Redlich–Kister equation correlates the HE data to within about experimental uncertainty. The calculated results from the PR and the PT are comparable. It is indicated that the overall average absolute relative deviations (AARD) of the excess enthalpy calculations are reduced from 18.8% and 18.8% to 6.6% and 7.0%, respectively, as the second adjustable binary interaction parameter, kbij, is added in the PR and the PT equations. Also, the NRTL model correlates the HE data to an overall AARD of 10.8% by using two adjustable model parameters.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号