首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structures and Electromagnetic Properties of Boron Nitride Nanoribbons Doped with Transition Metals
Authors:Jiajun Ma  Prof?Dr Yang Wang
Institution:School of Chemistry and Chemical Engineering, Yangzhou University, 225002 Yangzhou, China
Abstract:Inspired by the recent discovery of the Ti-doped BN nanocages, here we report the design of novel boron nitride (BN) nanoribbons (BNNRs) doped with fourth-row transition metals (Sc?Cu) and the prediction of their structural and electromagnetic properties. First-principles calculations and ab initio molecular dynamics simulations show that Ti-doped BNNR possesses both thermodynamic and kinetic stability at high temperatures for synthesis of BN materials. Metal doping may make the nonmagnetic pristine BNNR ferromagnetic or antiferromagnetic, depending on the metal. The doping with all considered metals reduces substantially the band gap of pristine BNNR. For example, Sc-doped BNNR is ferromagnetic with an indirect band gap of 1.18 eV, while V-doped nanoribbon is antiferromagnetic with a direct gap of 2.50 eV. Remarkably, the carrier mobility in both materials is significantly enhanced compared to the pristine BNNR. Our findings suggest that doping with different metals may endow BNNRs with versatile electronic and magnetic properties.
Keywords:ab initio calculations  boron nitride  electromagnetic properties  low-dimensional materials  transition metals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号