首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterization of the surface charge property and porosity of track-etched polymer membranes
Authors:Jiakun Zhuang  Long Ma  Yinghua Qiu
Institution:1. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, P. R. China;2. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, P. R. China

Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P. R. China

Abstract:As an important property of porous membranes, the surface charge property determines many ionic behaviors of nanopores, such as ionic conductance and selectivity. Based on the dependence of electric double layers on bulk concentrations, ionic conductance through nanopores at high and low concentrations is governed by the bulk conductance and surface charge density, respectively. Here, through the investigation of ionic conductance inside track-etched single polyethylene terephthalate (PET) nanopores under various concentrations, the surface charge density of PET membranes is extracted as ~?0.021 C/m2 at pH 10 over measurements with 40 PET nanopores. Simulations show that surface roughness can cause underestimation in surface charge density due to the inhibited electroosmotic flow. Then, the averaged pore size and porosity of track-etched multipore PET membranes are characterized by the developed ionic conductance method. Through coupled theoretical predictions in ionic conductance under high and low concentrations, the averaged pore size and porosity of porous membranes can be obtained simultaneously. Our method provides a simple and precise way to characterize the pore size and porosity of multipore membranes, especially for those with sub-100 nm pores and low porosities.
Keywords:electric double layers  nanopores  porosity  surface charge density  surface-charge-governed ionic current
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号