On-chip microfluidic buffer swap of biological samples in-line with downstream dielectrophoresis |
| |
Authors: | Xuhai Huang Karina Torres-Castro Walter Varhue Aditya Rane Ahmed Rasin Nathan S. Swami |
| |
Affiliation: | 1. Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia, USA;2. Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA |
| |
Abstract: | Microfluidic cell enrichment by dielectrophoresis, based on biophysical and electrophysiology phenotypes, requires that cells be resuspended from their physiological media into a lower conductivity buffer for enhancing force fields and enabling the dielectric contrast needed for separation. To ensure that sensitive cells are not subject to centrifugation for resuspension and spend minimal time outside of their culture media, we present an on-chip microfluidic strategy for swapping cells into media tailored for dielectrophoresis. This strategy transfers cells from physiological media into a 100-fold lower conductivity media by using tangential flows of low media conductivity at 200-fold higher flow rate versus sample flow to promote ion diffusion over the length of a straight channel architecture that maintains laminarity of the flow-focused sample and minimizes cell dispersion across streamlines. Serpentine channels are used downstream from the flow-focusing region to modulate hydrodynamic resistance of the central sample outlet versus flanking outlets that remove excess buffer, so that cell streamlines are collected in the exchanged buffer with minimal dilution in cell numbers and at flow rates that support dielectrophoresis. We envision integration of this on-chip sample preparation platform prior to or post-dielectrophoresis, in-line with on-chip monitoring of the outlet sample for metrics of media conductivity, cell velocity, cell viability, cell position, and collected cell numbers, so that the cell flow rate and streamlines can be tailored for enabling dielectrophoretic separations from heterogeneous samples. |
| |
Keywords: | dielectrophoresis microfluidics sample preparation separation tangential flows |
|
|