首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Energy transfer processes in linear triatomic molecule-solid surface collisions
Institution:1. Nanophotonics Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620024, India;2. Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India;3. School of Chemistry, University of Melbourne, Vic 3010, Australia;2. University of California, Department of Bioengineering and Therapeutic Sciences, Berkeley, CA, United States
Abstract:The semiclassical stochastic trajectory method is extended to the study of rotational and vibrational transitions for linear triatomic molecules colliding with non-rigid solid surfaces. Rotational and vibrational motion are treated by quantum mechanics, translational motion by classical mechanics, and surface atom motion by the classical generalized Langevin equation. Self-consistent coupling of all motions is enforced via Ehrenfest's theorem. Calculations of the kinetic energy and gas temperature dependence of trapping probabilities, vibrational relaxation probabilities and final vibrational state distributions are presented for the CO2-Ag(111) system at surface temperatures of 0 and 600 K. The trapping probabilities are greatly enhanced by the rotational motion and also vary to some degree with the initial vibrational state of the CO2. Total vibrationally inelastic probabilities are on the order of 10−2 for a single collision event with an initial state (00°1). For the initial state (0110) these are much larger, ~ 10−1, due to the nature of bending mode motion. In conjunction with the large trapping probabilities, the mechanism of vibration to vibration, rotation, translation, phonon energy transfer can provide vibration relaxation probabilities in the range of those measured experimentally. A pseudo-selection rule for conservation of vibrational angular momentum is found.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号