The interaction of CO and O2 with the (111) surface of Pt3Ti |
| |
Affiliation: | 1. Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342011, India;2. Defence Laboratory, Jodhpur 342011, India |
| |
Abstract: | The electronic properties of clean and partly oxidized Pt3Ti(111) surfaces have been studied utilizing carbon monoxide both as a probe and as a reducing agent. Vibrational frequencies and desorption profiles of chemisorbed CO as well as ion scattering and angular resolved X-ray photoelectron spectroscopy (XPS) suggest that the first atomic layer of annealed Pt3Ti(111) is quasi-pure platinum. Scarcely any (θ ≈ 0.01) dissociation of CO was observed. Minor shifts of vibrational frequencies and desorption temperatures compared to Pt(111) and a p(2 × 2) “reconstruction” of the clean surface reveal some influence of the bulk. Auger spectroscopy, XPS, and ion scattering all show an increased titanium signal as a result of oxidation. Surface bound atomic oxygen gives a vibrational band around 650 cm−1 which coincides with infrared absorption spectra of TiO2. Flashing with CO shifts the band to 500 cm−1. Correlated with this shift we observe (i) CO2 desorption at a temperature well above that observed for Pt(111)/O, (ii) an altered Ti XPS signal, and (iii) a reduced oxygen concentration. Subsequently adsorbed CO molecules vibrate at the same frequencies as on the bare surface, give the same c(4 × 2) LEED pattern, and desorb at the same temperatures but with reduced intensity, in all proving that the surface oxide only acts as a site-blocker with respect to the metal surface. Our current understanding of these observations is that oxygen creates “islands of TiO2”, segregated to the surface but with no electronic influence on remaining areas of the platinum enriched metal surface. The hexacoordinated Ti4+ ions on the surface of these islands are reduced by CO to pentacoordinated Ti3+ species. The vibrational shift, 650 to 500 cm−1, can be understood by the dipole active bands of a triatomic O−Ti4+ −O vibrator compared to a diatomic Ti3+−O vibrator. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|