首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparative study of three teicoplanin-based chiral stationary phases using the linear free energy relationship model
Authors:Lokajová Jana  Tesarová Eva  Armstrong Daniel W
Institution:Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
Abstract:Teicoplanin (T) is a macrocyclic glycopeptide that is highly effective as a chiral selector for enantiomeric separations. In this study, we used three teicoplanin-based chiral stationary phases (CSPs) - native teicoplanin, teicoplanin aglycon (TAG) and recently synthesized methylated teicoplanin aglycon (MTAG). In order to examine the importance of various interaction types in the chiral recognition mechanism the three related CSPs were evaluated and compared using a linear free energy relationship (LFER). The capacity factors of 19 widely different solutes, with known solvation parameters, were determined on each of the columns under the same mobile phase conditions used for the chiral separations. The regression coefficients obtained revealed the magnitude of the contribution of individual interaction types to the retention on the compared columns under those specific experimental conditions. Statistically derived standardized regression coefficients were used to evaluate the contribution of individual molecular interactions within one stationary phase. It has been concluded that intermolecular interactions of the hydrophobic type significantly contribute to retention on all the CSPs studied here. Other retention increasing factors are n- and pi-electron interactions and dipole-dipole or dipole-induced dipole ones, while hydrogen donating or accepting interactions are more predominant with the mobile phase than with the stationary phases. However, these types of interactions are not equally significant for all the CSPs studied.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号