首页 | 本学科首页   官方微博 | 高级检索  
     


Loaded rubber-like materials subjected to small-amplitude vibrations
Authors:T. Beda  J. B. Casimir  K. E. Atcholi  Y. Chevalier
Affiliation:1. Industrial and Mechanical Engineering Department, Ecole Nationale Supérieure Polytechnique (ENSP), BP 8390, Yaoundé, Cameroon
2. Département de Physique, Faculté des Sciences, Université de NGaoundéré, BP 424, NGaoundéré, Cameroon
3. Laboratoire d’Ingénierie des Structures Mécanique et des Matériaux (LISMMA), SUPMECA de Paris, 3 Rue Fernand Hainaut, 93407, Saint Ouen Cedex, France
4. Institut de Recherche sur les Transports, l’Energie et la Société (IRTES EA7274), Laboratoire Systèmes et Transport (SeT EA 3317), Université de Technologie de Belfort-Montbéliard (UTBM), 90010, Belfort Cedex, France
Abstract:This paper proposes a constitutive law and a method for characterizing highly preloaded viscoelastic materials subjected to linear (small-amplitude) vibrations. A multiplicative non-separable variables law has been suggested to model the behavior that depends on both stretch and time/frequency. This approach allows splitting the intricate combined test performed simultaneously on both stretch and frequency, generally in a limited experimental domain up to 100 Hz, into two independent tests. Thus, on one hand, the dynamic complex modulus dependent on frequency alone is evaluated on the basis of vibration tests in a large experimental domain up to 100 kHz. On the other hand, energetic parameters are determined from a quasi-static hyperelastic tensile test. The complex modulus, dependent on both stretch and frequency, is then deduced from the results acquired from uncoupled investigations. This work shows that, in extension, the elastic modulus increases with increasing stretch, and the loss factor decreases with increasing stretch; while, in compression, around the material undeformed state, the modulus increases as the stretch increases till a certain value of compression stretch (upturn point depending on material characteristics), and then the modulus decreases as the stretch increases. Globally, preload rigidifies materials but reduces their damping property. These results closely match a well-known observation in solid mechanics.
Keywords:Elastomers  Viscoelasticity  Hyperelasticity  Vibrations  Modeling  Characterization  Combined modulus.
本文献已被 CNKI 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号