首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Anhydrous Sol-Gel Synthesis of Titania-Doped Siloxane Polymer for Integrated Optics
Authors:Xinshi Luo  Congji Zha  Barry Luther-Davies
Institution:(1) Laser Physics Centre, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT, 0200, Australia
Abstract:Sol-gel synthesis of organic-inorganic hybrid materials for planar waveguides and devices has received growing interest due to its low-cost processing and good suitability for doping. Titania is an important optical dopant, but homogeneous incorporation of titania in silica is difficult to be achieved by the conventional sol-gel process (aqueous system) because of the significant difference between the hydrolysis rates of the precursors. In this paper, we report an anhydrous sol-gel process for synthesising titania-doped siloxane polymers. The process consists of a hydrolysis of 3-methacryloxypropyltrimethoxysilane (MPS) with boric acid under anhydrous conditions, and a condensation with dimethyldimethoxysilane (DMDMS), diphenyldimethoxysilane (DPhDMS) and titanium ethoxide (TET). Optical characterisations for the produced titania-doped polymer were performed, and results showed that TET doping is useful for reducing the OH concentration of the synthesised polymer and is also effective for improving the optical quality of spin coatings. DMDMS and DPhDMS are favourable in reducing the birefringence and in increasing the thermostability of the material, and the methacryl groups of MPS are UV-polymerizable, which is useful for low cost fabrication of waveguides by photolithographic process. The results of ellipsometry scanning measurements show that titania is homogeneously incorporated in the hybrid matrix, suggesting that the anhydrous sol-gel process is useful for preparation of UV-sensitive titania-doped siloxane polymers for optical applications.
Keywords:anhydrous sol-gel process  waveguides  ormosil materials  optical characterisations
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号