首页 | 本学科首页   官方微博 | 高级检索  
     


Singlet and triplet potential surfaces for the O2+C2H4 reaction
Authors:Park Kyoyeon  West Aaron  Raheja Erica  Sellner Bernhard  Lischka Hans  Windus Theresa L  Hase William L
Affiliation:Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA.
Abstract:Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More accurate energies were obtained for the CASSCF structures with the MRMP2/aug-cc-pVDZ method. An important and necessary aspect of the calculations was the need to use different CASSCF active spaces for the different reaction paths on the investigated PESs. The CASSCF calculations focused on O(2)+C(2)H(4) addition to form the C(2)H(4)O(2) biradical on the triplet and singlet surfaces, and isomerization reaction paths ensuing from this biradical. The triplet and singlet C(2)H(4)O(2) biradicals are very similar in structure, primarily differing in their C-C-O-O dihedral angles. The MRMP2 values for the O(2)+C(2)H(4)→C(2)H(4)O(2) barrier to form the biradical are 33.8 and 6.1 kcal/mol, respectively, for the triplet and singlet surfaces. On the singlet surface, C(2)H(4)O(2) isomerizes to dioxetane and ethane-peroxide with MRMP2 barriers of 7.8 and 21.3 kcal/mol. A more exhaustive search of reaction paths was made for the singlet surface using the UB3LYP/aug-cc-pVDZ theory. The triplet and singlet surfaces cross between the structures for the O(2)+C(2)H(4) addition transition states and the biradical intermediates. Trapping in the triplet biradical intermediate, following (3)O(2)+C(2)H(4) addition, is expected to enhance triplet→singlet intersystem crossing.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号