首页 | 本学科首页   官方微博 | 高级检索  
     


Preparative continuous flow electrophoretic instrumentation for purification of biological samples
Authors:Miroslava Stastna  Karel Slais
Affiliation:Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
Abstract:We constructed a preparative instrumentation and developed the methods that are based on separation of the samples by bidirectional isotachophoresis/moving boundary electrophoresis in continuous divergent flow. The described instrumentation can be used for a variety of the samples, however, it can be easily optimized and tailored for the specific sample. The trapezoid separation bed from nonwoven textile exhibited minimum adsorption effect for sample and it can be used repeatedly. By the addition of different spacers via separation space inlets, the sections of pH gradient can be modified to enhance the separation. The liquid flow from two inlets positioned on each side of the sample inlet prevented the contact of the sample with anolyte and catholyte at the analysis beginning. One pair of thin electrodes (graphite and stainless-steel) was placed at the separation space output. The electrode products were washed out into drains without disturbing the focusing process. The influence of EOF was managed by tilting the separation bed in the direction from cathodic to anodic side. The components of spirulina supernatant and color pI markers were separated in the pH gradient from 3.9 to 10.1. pH gradient was stable for at least 4.5 h and spirulina supernatant from about 0.12 g of dry powder was processed. Compared to other preparative methods used for spirulina separation, the presented method/instrumentation working with a continuous divergent flow had essential advantages. The efficient separation was fast, and no intermediate steps were necessary to obtain liquid fractions with separated components compatible with further biological experiments.
Keywords:Bidirectional isotachophoresis  Biological samples  Divergent continuous flow  Moving boundary electrophoresis  Separation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号