首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Clustering of polycyclic aromatic hydrocarbons in matrix-assisted laser desorption/ionization and laser desorption mass spectrometry
Authors:Cristadoro Anna  Räder Hans Joachim  Müllen Klaus
Institution:Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Abstract:The desorption/ionization behaviour of polycyclic aromatic hydrocarbons (PAHs) in matrix-assisted laser desorption/ionization (MALDI) and laser desorption (LD) mass spectrometry was studied by the solvent-free sample preparation method. As the understanding of the desorption/ionization mechanism in MALDI is normally hampered by the different ionization and desorption efficiencies of the analytes, this work was focused on the analyses of a homologous series of four hexabenzocoronenes (HBCs) possessing virtually the same ionization efficiency: HBC parent, hexamethyl-hexabenzocoronene (HBC-C1), hexapropyl-hexabenzocoronene (HBC-C3) and hexakis(dodecyl)-hexabenzocoronene (HBC-C12). The different signal intensities obtained in their mass spectra can be related to differences in their desorption efficiencies, which are attributed to the different strengths of the intermolecular interactions between unsubstituted and alkylated HBCs in the solid state. The influence of the aromatic structure of PAHs on their photoionization/desorption probability was investigated. As a model system, an equimolar mixture composed of HBC-C12 and hexakis(dodecyl)-hexaphenylbenzene (HPB-C12) was chosen. The aromatic structures of both molecules and thus their absorption coefficients at the laser wavelength differ substantially and have a huge influence on their photoionization efficiency. The combined effect of laser light absorption and intermolecular interactions on the desorption/ionization behaviour of giant PAHs was further studied by using an equimolar mixture composed of a larger PAH (C(222)H(42)) and its dendritic precursor (C(222)H(150)). This mixture shows the opposite behaviour to that of the former example, because the balance between desorption and ionization efficiency has changed significantly. The present investigation should be of interest for providing a better understanding of MALDI and LD spectra obtained from natural PAH-containing samples, such as heavy oils, asphaltenes or pitches, for which our artificial mixtures represent suitable model systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号