首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The symmetry group paradox for non-rigid molecules
Authors:B J Dalton
Institution:Centre for Quantum and Optical Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Australia
Abstract:In many situations, the energy levels for a quantum system, whose Hamiltonian is invariant under a specific symmetry group, are split when the Hamiltonian is replaced by a new one with lower symmetry. In non-rigid molecules (NRM), fast quantum tunnelling processes allow the molecule to change between different geometrical configurations related by permutations of identical nuclei (or with inversion as well), resulting in the splitting of the energy levels for the rigid molecule (RM) case where tunnelling is absent. However, for NRM, there is apparently a paradoxical situation where although the original RM energy levels are associated with a symmetry group isomorphic to the point group for the geometrical configuration, the split NRM energy levels are associated with a symmetry group consisting of all permutations and inversions related to the fast quantum tunnelling processes between configurations, and for which the point group is a subgroup. The resolution of this paradox, where energy level splitting is evidently accompanied by an enlargement of the symmetry group, is the subject of this article.
Keywords:Non-rigid molecules  symmetry group  quantum tunnelling  energy level splitting  permutation-inversions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号