首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Where Infinite Spin Particles are Localizable
Authors:Roberto Longo  Vincenzo Morinelli  Karl-Henning Rehren
Abstract:Particle states transforming in one of the infinite spin representations of the Poincaré group (as classified by E. Wigner) are consistent with fundamental physical principles, but local fields generating them from the vacuum state cannot exist. While it is known that infinite spin states localized in a spacelike cone are dense in the one-particle space, we show here that the subspace of states localized in any double cone is trivial. This implies that the free field theory associated with infinite spin has no observables localized in bounded regions. In an interacting theory, if the vacuum vector is cyclic for a double cone local algebra, then the theory does not contain infinite spin representations. We also prove that if a Doplicher–Haag–Roberts representation (localized in a double cone) of a local net is covariant under a unitary representation of the Poincaré group containing infinite spin, then it has infinite statistics. These results hold under the natural assumption of the Bisognano–Wichmann property, and we give a counter-example (with continuous particle degeneracy) without this property where the conclusions fail. Our results hold true in any spacetime dimension s + 1 where infinite spin representations exist, namely \({s\geq 2}\).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号