首页 | 本学科首页   官方微博 | 高级检索  
     


Radium removal from aqueous solutions by adsorption on non-treated and chemically modified biomass by-product
Authors:Melpomeni Prodromou  Ioannis Pashalidis
Affiliation:1. Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
Abstract:The adsorption efficiency of a biomass by-product (olive cake) regarding the removal of radium (226Ra) from aqueous solutions has been investigated prior and after its chemical treatment. The chemical treatment of the biomass by-product included phosphorylation and MnO2-coating. The separation/removal efficiency has been studied as a function of pH, salinity (NaCl) and calcium ion concentration (Ca2+) in solution. Evaluation of the experimental data shows clearly that the phosphorylated biomass by-product presents the highest adsorption capacity and efficiency followed by the MnO2-coated material and the non-treated biomass by-product. However, regarding the effect of salinity and the presence of competitive cations (e.g. Ca2+) on the adsorption/removal efficiency, the MnO2-coated material shows the lowest decline in efficiency (only 2 % of the relative adsorption efficiency) followed by the non-treated and the phosphorylated biomass by-product. The results of the present study indicate that depending on the physicochemical characteristics of the radium-contaminated water, all three types of the biomass by-product could be effectively used for the treatment of radium-contaminated waters. Nevertheless, the MnO2-coated material is expected to be the most effective adsorbent and an alternative to MnO2 resins for the treatment of environmentally relevant waters.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号