首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cross-linked normal hexagonal and bicontinuous cubic assemblies via polymerizable gemini amphiphiles
Authors:Pindzola Brad A  Jin Jizhu  Gin Douglas L
Institution:Department of Chemistry, University of California, Berkeley, California 94720, USA.
Abstract:The synthesis and lyotropic liquid-crystalline (LLC) phase behavior of a homologous series of intrinsically cross-linkable gemini surfactants are described. These novel bis(alkyl-1,3-diene)-based phosphonium gemini amphiphiles exhibit "normal" hexagonal (H(I)), Type I bicontinuous cubic (Q(I)), and lamellar (L(alpha)) phases in water, and can be photocross-linked with retention of phase architecture in each case. On the basis of their locations on the phase diagram, their powder X-ray diffraction profiles, and the physical properties of the cross-linked materials, the Q(I) phases formed by these gemini monomers are consistent with four possible bicontinuous cubic architectures with P or I space group symmetry that have been identified previously for small molecule amphiphiles. The extent of polymerization (i.e., the degree of diene conversion) achieved in the LLC phases was determined to be in the 23% to 71% range using UV-vis spectrometry, which is more than sufficient to extensively stabilize the systems. The resulting cross-linked H(I), L(alpha), and Q(I) phases are stable up to 300 degrees C in air. To our knowledge, these reactive amphiphiles constitute the first example of a polymerizable gemini surfactant, and the first example of a cross-linkable amphiphile system that can be polymerized in both the H(I) and a Q(I) mesophase with retention of phase microstructure.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号