Abstract: | Two aromatic polyaminocarboxylate ligands, ethylenediaminedi(o-hydroxyphenylacetic acid) (EDDHA) and N,N′-bis(hydroxybenzyl)ethylenediamine-N,N′-diacetic acid (HBED), were applied for the separation of transition and heavy metal ions by the ion-exchange variant of electrokinetic chromatography. EDDHA structure contains two chiral carbon centers. It makes it impossible to use the commercially available ligand. All the studied metal ions showed two peaks, which correspond to meso and rac forms of the ligand. The separation of metal–HBED chelates was performed using poly(diallyldimethylammonium) polycations in mixed acetate–hydroxide form. Simultaneous separation of nine single- and nine double-charged HBED chelates, including In(III), Ga(III), Co(II)–(III) and Mn(II)–(III) pairs demonstrated the efficiency of 40 000–400 000 theoretical plates. The separation of Co(III), Fe(III) complexes with different arrangements of donor groups and oxidation of Co(II), Mn(II), Fe(II) ions in reaction with HBED have been discussed. |