首页 | 本学科首页   官方微博 | 高级检索  
     


A semi-automated design of instance-based fuzzy parameter tuning for metaheuristics based on decision tree induction
Authors:Jana Ries  Patrick Beullens
Affiliation:1.University of Portsmouth,Hampshire,UK;2.University of Southampton,Southampton,UK
Abstract:Two main concepts are established in the literature for the Parameter Setting Problem of metaheuristics: Parameter Tuning Strategies (PTS) and Parameter Control Strategies (PCS). While PTS result in a fixed parameter setting for a set of problem instances, PCS are incorporated into the metaheuristic and adapt parameter values according to instance-specific performance feedback. The idea of Instance-specific Parameter Tuning Strategies (IPTS) is aiming to combine advantages of both tuning and control strategies by enabling the adoption of parameter values tailored to instance-specific characteristics a priori to running the metaheuristic. This requires, however, a significant knowledge about the impact of instance characteristics on heuristic performance. This paper presents an approach that semi-automatically designs the fuzzy logic rule base to obtain instance-specific parameter values by means of decision trees. This enables the user to automate the process of converting insights about instance-specific information and its impact on heuristic performance into a fuzzy rule base IPTS system. The system incorporates the decision maker’s preference about the trade-off between computational time and solution quality.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号