首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Orbital interaction mechanisms of conductance enhancement and rectification by dithiocarboxylate anchoring group
Authors:Li Zhenyu  Kosov Daniel S
Institution:Department of Chemistry and Biochemistry, University of Maryland, College Park, 20742, USA.
Abstract:We study computationally the electron transport properties of dithiocarboxylate terminated molecular junctions. Transport properties are computed self-consistently within density functional theory and nonequilibrium Green's functions formalism. A microscopic origin of the experimentally observed current amplification by dithiocarboxylate anchoring groups is established. For the 4,4'-biphenyl bis(dithiocarboxylate) junction, we find that the interaction of the lowest unoccupied molecular orbital (LUMO) of the dithiocarboxylate anchoring group with LUMO and highest occupied molecular orbital (HOMO) of the biphenyl part results in bonding and antibonding resonances in the transmission spectrum in the vicinity of the electrode Fermi energy. A new microscopic mechanism of rectification is predicted based on the electronic structure of asymmetrical anchoring groups. We show that the peaks in the transmission spectra of 4'-thiolato-biphenyl-4-dithiocarboxylate junction respond differently to the applied voltage. Depending upon the origin of a transmission resonance in the orbital interaction picture, its energy can be shifted along with the chemical potential of the electrode to which the molecule is more strongly or more weakly coupled.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号