首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chiral hydroperoxides as oxygen source in the catalytic stereoselective epoxidation of allylic alcohols by sandwich-type polyoxometalates: control of enantioselectivity through a metal-coordinated template
Authors:Adam Waldemar  Alsters Paul L  Neumann Ronny  Saha-Möller Chantu R  Seebach Dieter  Beck Albert K  Zhang Rui
Institution:Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
Abstract:The epoxidation of allylic alcohols is shown to be efficiently and selectively catalyzed by the oxidatively resistant sandwich-type polyoxometalates, POMs, namely WZnM(2)(ZnW(9)O(34))(2)](q)(-) M = OV(IV), Mn(II), Ru(III), Fe(III), Pd(II), Pt(II), Zn(II); q = 10-12], with organic hydroperoxides as oxygen source. Conspicuous is the fact that the nature of the transition metal M in the central ring of polyoxometalate affects significantly the reactivity, chemoselectivity, regioselectivity, and stereoselectivity of the allylic alcohol epoxidation. For the first time, it is demonstrated that the oxovanadium(IV)-substituted POM, namely ZnW(VO)(2)(ZnW(9)O(34))(2)](12-), is a highly chemoselective, regioselective, and also stereoselective catalyst for the clean epoxidation of allylic alcohols. A high enantioselectivity (er values up to 95:5) has been achieved with ZnW(VO)(2)(ZnW(9)O(34))(2)](12)(-) and the sterically demanding TADOOL-derived hydroperoxide TADOOH as regenerative chiral oxygen source. Thus, a POM-catalyzed asymmetric epoxidation of excellent catalytic efficiency (up to 42 000 TON) has been made available for the development of sustainable oxidation processes. The high reactivity and selectivity of this unprecedented oxygen-transfer process are mechanistically rationalized in terms of a peroxy-type vanadium(V) template.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号