Abstract: | In conclusion, let us note the principal results of the calculation.1. | On a clean Ni(100) surface, only molecular adsorption of water is realized. Partial dissociation of H2O is thermodynamically allowed process; however, dissociation of water is impossible because of kinetic limitations. | 2. | Modification of the nickel surface by oxygen stabilizes the donor-acceptor pair (H2O/O) on the surface and removes the kinetic limitation in decomposition of water, through a substantial reduction of the activation energy of dissociation. | 3. | The promoting role of oxygen is manifested in an increase in the nonuniformity of electron density on the nickel surface in the vicinity of the [Ni]–OH2 bond, which makes it possible to open up a new channel of the reaction in which a high degree of energy compensation in the water dissociation reaction is possible. | Institute of Catalysis, Siberian Branch, Russian Academy of Sciences. Translated from Zhurnal Strukturnoi Khimii, Vol. 33, No. 2, pp. 35–41, March-April, 1992. |