首页 | 本学科首页   官方微博 | 高级检索  
     


An N⋯H⋯N low-barrier hydrogen bond preorganizes the catalytic site of aspartate aminotransferase to facilitate the second half-reaction
Authors:Victoria N. Drago  Steven Dajnowicz  Jerry M. Parks  Matthew P. Blakeley  David A. Keen  Nicolas Coquelle  Kevin L. Weiss  Oksana Gerlits  Andrey Kovalevsky  Timothy C. Mueser
Abstract:Pyridoxal 5′-phosphate (PLP)-dependent enzymes have been extensively studied for their ability to fine-tune PLP cofactor electronics to promote a wide array of chemistries. Neutron crystallography offers a straightforward approach to studying the electronic states of PLP and the electrostatics of enzyme active sites, responsible for the reaction specificities, by enabling direct visualization of hydrogen atom positions. Here we report a room-temperature joint X-ray/neutron structure of aspartate aminotransferase (AAT) with pyridoxamine 5′-phosphate (PMP), the cofactor product of the first half reaction catalyzed by the enzyme. Between PMP NSB and catalytic Lys258 Nζ amino groups an equally shared deuterium is observed in an apparent low-barrier hydrogen bond (LBHB). Density functional theory calculations were performed to provide further evidence of this LBHB interaction. The structural arrangement and the juxtaposition of PMP and Lys258, facilitated by the LBHB, suggests active site preorganization for the incoming ketoacid substrate that initiates the second half-reaction.

The neutron structure of pyridoxal 5′-phosphate-dependent enzyme aspartate aminotransferase with pyridoxamine 5′-phosphate (PMP) reveals a low-barrier hydrogen bond between the amino groups of PMP and catalytic Lys258, preorganizing the active site for catalysis
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号