首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-throughput dielectrophoretic separator based on printed circuit boards
Authors:Jasper Giesler  Laura Weirauch  Jorg Thöming  Michael Baune  Georg R Pesch
Institution:1. Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Leobener Straße 6, 28359 Bremen, Germany;2. Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Leobener Straße 6, 28359 Bremen, Germany

MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany

Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Straße 6, 28359 Bremen, Germany;3. Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Leobener Straße 6, 28359 Bremen, Germany

Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Straße 6, 28359 Bremen, Germany

Abstract:The separation of particles with respect to their intrinsic properties is an ongoing task in various fields such as biotechnology and recycling of electronic waste. Especially for small particles in the lower micrometer or nanometer range, separation techniques are a field of current research since many existing approaches lack either throughput or selectivity. Dielectrophoresis (DEP) is a technique that can address multiple particle properties, making it a potential candidate to solve challenging separation tasks. Currently, DEP is mostly used in microfluidic separators and thus limited in throughput. Additionally, DEP setups often require expensive components, such as electrode arrays fabricated in the clean room. Here, we present and characterize a separator based on two inexpensive custom-designed printed circuit boards (80 × 120 mm board size). The boards consist of interdigitated electrode arrays with 250 μ $250\ \umu$ m electrode width and spacing. We demonstrate the separation capabilities using polystyrene particles ranging from 500 nm to 6 μ $6\ \umu$ m in monodisperse experiments. Further, we demonstrate selective trapping at flow rates up to 240 ml/h in the presented device for a binary mixture. Our experiments demonstrate an affordable way to increase throughput in electrode-based DEP separators.
Keywords:dielectrophoresis  high-throughput  lab-on-pcb  selective trapping  separation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号