首页 | 本学科首页   官方微博 | 高级检索  
     


Comparative study of natural rubber and acrylonitrile rubber reinforced with aligned short aramid fiber
Affiliation:1. Polymer Science and Technology Program, Department of Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand;2. Rubber Technology Research Center, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand;3. Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand;4. Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand;1. LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío, 4051381 Concepción, Chile;2. Department of Mechanical Engineering, University of the Basque Country, 48013 Bilbao, Spain;1. Cracow University of Technology, Department of Chemistry and Technology of Polymers, Warszawska 24, 31-155 Kraków, Poland;2. UTP University of Sciences and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland
Abstract:The aims of this paper are three-fold. The first is to determine the reinforcement of high performance short aramid fiber in two representative rubber matrices, namely natural rubber and acrylonitrile rubber. The second is to ascertain the effect of rubber polarity on the reinforcement. The third is to establish a pattern of reinforcement for use with less studied fibers. The rubbers were reinforced either with only aramid fiber or with a hybrid of aramid fiber and carbon black. The fiber contents were varied at 0, 2, 5 and 10 parts (by weight) per hundred rubber (phr) while those of carbon black were 0, 10, 20 and 30 phr. Conventional sulfur vulcanization was used. It was found that aramid fiber can reinforce both rubbers in the low strain region effectively, although to a significantly different degree. The hybrid carbon black provides additional reinforcement at low to medium strains and allows high strain stress upturn to occur in both rubber matrices. The findings enable the preparation of rubber composites having a wide, controllable range of mechanical behavior for specific high-performance engineering applications. Significantly, they also serve as a benchmark for developing reinforced systems from alternative fibers, particularly those from natural sources.
Keywords:Natural rubber  Acrylonitrile rubber  Aramid fiber  Hybrid composite  Reinforced rubber
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号