首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A comparative study on the effect of carbon fillers on electrical and thermal conductivity of a cyanate ester resin
Institution:1. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;2. Department of Materials, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom;1. Center for Advanced Materials, Qatar University, PO Box 2713, Doha, Qatar;2. Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha, Czechia;1. Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110 016, India;2. Department of Civil Engineering, National Institute of Technology Rourkela, Odisha, 769008, India;1. Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Altai Krai, Russia;2. N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences (NIOCh SB RAS), Novosibirsk 630090, Russia;3. OOO Elektromash, Novosibirsk, 630088 Russia
Abstract:Carbon fillers including multi-walled carbon nanotubes (MWCNTs), carbon black (CB) and graphite were introduced in a cyanate ester (CE) resin, respectively. The effects of the fillers on the electrical and thermal conductivity of the resin were measured and analyzed based on the microscopic observations. MWCNTs, CB and graphite exhibited percolation threshold at 0.1 wt%, 0.5 wt% and 10 wt%, respectively. The maximal electrical conductivity of the composites was 1.08 S/cm, 9.94 × 10?3 S/cm and 1.70 × 10?5 S/cm. MWCNTs showed the best enhancement on the electrical conductivity. The thermal behavior of the composites was analyzed by calorimetry method. Incorporation of MWCNTs, CB and graphite increased the thermal conductivity of CE resin by 90%, 15% and 92%, respectively. Theoretical models were introduced to correlate the thermal conductivity of the CE/MWCNTs composite. The interfacial thermal resistance between CE resin and MWCNTs was 8 × 10?8 m2K/W and the straightness ratio was 0.2. The MWCNTs were seriously entangled and agglomerated. Simulation results revealed that thermal conductivity of the CE/MWCNTs composites can be substantially elevated by increasing the straightness ratio and/or filler content of MWCNTs.
Keywords:Carbon nanotube  Carbon black  Graphite  Cyanate ester  Electrical conductivity  Thermal conductivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号