首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On necessary precautions when measuring solid polymer linear viscoelasticity with dynamic analysis in torsion
Institution:1. LMS, Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France;2. Laboratoire PIMM, ENSAM, CNRS, CNAM, 151 bd de l’Hôpital, 75013 Paris, France;1. Department of Railway Engineering, School of Civil Engineering, Central South University, Changsha, Hunan, 410075, China;2. Department of Engineering and Technology, Trelleborg IAVS, Leicester, LE4 2BN, UK;3. Department of Automotive Engineering, Tsinghua University, Beijing, 100084, China;1. Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, 90-924 Lodz, Poland;2. Institute of Applied Computer Science, Lodz University of Technology, 90-924 Lodz, Poland;3. University of Social Sciences, 90-113 Lodz, Poland;1. Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094, China;2. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;1. College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China;2. Institute of Rheological Mechanics, Xiangtan University, Xiangtan 411105, China;1. Department of Civil Engineering and Architecture, University of Catania, Italy;2. Department of Electrical, Electronics, and Informatics Engineering, University of Catania, Viale A. Doria, 6-95125 Catania, Italy
Abstract:Solid polymer linear viscoelasticity in shear is often characterized by applying torsion and using the Saint-Venant solution when rectangular prismatic specimens are considered. It is shown that experimental dynamic torsion tests can show a dependency of the storage modulus and damping factor on the dimensions of the rectangular prismatic specimen when linear temperature ramps are applied. While the discrepancy of damping factor is explained by temperature heterogeneities and can be corrected easily by applying temperature steps, the inconsistency of storage modulus is due to an invalid application of the Saint-Venant solution. Finite element simulations allowed definition of the sample dimensions for which the Saint-Venant solution provides a good approximation, and a coefficient is given to correct the results obtained with commercial instruments when other sample dimensions are used.
Keywords:Viscoelasticity  Dynamic analysis  Torsion  Solid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号