首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Morphology and isothermal crystallization of graphene oxide reinforced biodegradable poly(butylene succinate)
Institution:1. School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China;2. Institute of Forensic Science, Criminal Police Corps of Chongqing Public Security Bureau, Chongqing 400021, China;3. Chongqing Academy of Science and Technology, Chongqing 401123, China;1. Institute of Building Construction and Technology, TU Wien, Karlsplatz 13/206-4, 1040 Vienna, Austria;2. Department of Orthopaedic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;3. Department of Mechanical Engineering, The University of Memphis, Memphis, TN 38152, USA;4. Institute of Solid State Physics, TU Wien, Karlsplatz 13/138-4, 1040 Vienna, Austria;1. Toray Research Center, Inc., Otsu, 520-8567, Japan;2. Application R&D Center, Horiba Ltd., Kyoto, 601-8510, Japan;3. Rakuyo Giken Co., Ltd., Kumiyama-cho, Kyoto, 613-0023, Japan;4. Graduate School of Science, Hiroshima University, Higashihiroshima, 739-8526, Japan;1. Department of Polymer Science & Engineering, Hannam University, Daejeon 34054, Republic of Korea;2. Underground Solutions Inc., Poway, CA 92064, USA;3. Ansco Inc., Daejeon 34051, Republic of Korea
Abstract:Graphene oxide (GO) was incorporated into poly(butylene succinate) (PBS) via a solution coagulation method to fabricate PBS/GO nanocomposites. Scanning electron microscope and transmission electron microscope observations indicated that GO with exfoliated lamella dispersed in PBS uniformly and showed good interfacial adhesion with the PBS matrix. Differential scanning calorimetry analysis suggested that the crystallization ability of PBS first increased and then decreased with increase in GO content, due to the competitive nucleating effect and confined space effect with addition of exfoliated GO. Isothermal crystallization kinetics investigation showed that the overall crystallization rate of PBS first increased and then decreased with increasing GO content while the crystallization mechanism remained unchanged. Polarized optical microscopy analysis indicated that GO worked as an effective nucleating agent for PBS. X-ray diffraction characterization suggested that incorporation of GO did not change the crystal structure of PBS. Both tensile testing and dynamic mechanical analysis witnessed the reinforcement in mechanical performance of PBS by incorporation of GO.
Keywords:Poly(butylene succinate)  Graphene oxide  Crystallization behavior  Reinforcement
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号