首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrophoretic mobility of linear and star-branched DNA in semidilute polymer solutions
Authors:Saha Sourav  Heuer Daniel M  Archer Lynden A
Institution:School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA. laa25@cornell.edu
Abstract:Electrophoresis of large linear T2 (162 kbp) and 3-arm star-branched (N(Arm) = 48.5 kbp) DNA in linear polyacrylamide (LPA) solutions above the overlap concentration c* has been investigated using a fluorescence visualization technique that allows both the conformation and mobility mu of the DNA to be determined. LPA solutions of moderate polydispersity index (PI approximately 1.7-2.1) and variable polymer molecular weight Mw (0.59-2.05 MDa) are used as the sieving media. In unentangled semidilute solutions (c* < c < c(e)), we find that the conformational dynamics of linear and star-branched DNA in electric fields are strikingly different; the former migrating in predominantly U- or I-shaped conformations, depending on electric field strength E, and the latter migrating in a squid-like profile with the star-arms outstretched in the direction opposite to E and dragging the branch point through the sieving medium. Despite these visual differences, mu for linear and star-branched DNA of comparable size are found to be nearly identical in semidilute, unentangled LPA solutions. For LPA concentrations above the entanglement threshold (c > c(e)), the conformation of migrating linear and star-shaped DNA manifest only subtle changes from their unentangled solution features, but mu for the stars decreases strongly with increasing LPA concentration and molecular weight, while mu for linear DNA becomes nearly independent of c and Mw. These findings are discussed in the context of current theories for electrophoresis of large polyelectrolytes.
Keywords:Electrophoretic mobility  Entanglements  Linear polyacrylamide  Semidilute polymer solutions  Star‐branched DNA
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号