首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chemiluminescence assay for quinones based on generation of reactive oxygen species through the redox cycle of quinone
Authors:Naoya Kishikawa  Nobuhiro Ohkubo  Kaname Ohyama  Kenichiro Nakashima and Naotaka Kuroda
Institution:(1) Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
Abstract:A sensitive and selective chemiluminescence assay for the determination of quinones was developed. The method was based on generation of reactive oxygen species through the redox reaction between quinone and dithiothreitol as reductant, and then the generated reactive oxygen was detected by luminol chemiluminescence. The chemiluminescence was intense, long-lived, and proportional to quinone concentration. It is concluded that superoxide anion was involved in the proposed chemiluminescence reaction because the chemiluminescence intensity was decreased only in the presence of superoxide dismutase. Among the tested quinones, the chemiluminescence was observed from 9,10-phenanthrenequinone, 1,2-naphthoquinone, and 1,4-naphthoquinone, whereas it was not observed from 9,10-anthraquinone and 1,4-benzoquinone. The chemiluminescence property was greatly different according to the structure of quinones. The chemiluminescence was also observed for biologically important quinones such as ubiquinone. Therefore, a simple and rapid assay for ubiquinone in pharmaceutical preparation was developed based on the proposed chemiluminescence reaction. The detection limit (blank + 3SD) of ubiquinone was 0.05 μM (9 ng/assay) with an analysis time of 30 s per sample. The developed assay allowed the direct determination of ubiquinone in pharmaceutical preparation without any purification procedure. MediaObjects/216_2008_2541_Figa_HTML.gif Figure Chemiluminescence generated through the redox cycle of quinone
Keywords:Luminol chemiluminescence  Quinone  Semiquinone radicals  Redox cycle  Ubiquinone
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号