首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecularly smooth cellulose surfaces for adhesion studies
Authors:Sczech Ronny  Riegler Hans
Institution:Max-Planck-Institut für Kolloid- und Grenzfl?chenforschung, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
Abstract:Cellulose is deposited on silicon wafer surfaces via spin coating from a solution of cellulose in dimethylacetamide (+7% lithium chloride). The resulting cellulose layers were analyzed by ellipsometry, AFM, FTIR, ICP-MS, X-ray reflectivity, and contact angle measurements. For cellulose concentrations below 0.07 wt% the wafer surfaces are covered with a network of cellulose fibrils. For concentrations between 0.07 and 0.5 wt%, closed films with thicknesses between 1.5 and approximately 10 nm are obtained. These films are molecularly smooth (rms roughness<2 nm). Higher concentrations result in thicker films with significantly rougher surfaces (rms roughness>2 nm). The cellulose layers were used to investigate cellulose/cellulose adhesion and their modification by polyelectrolytes. To this end the sticking behavior of cellulose beads was analyzed. It is demonstrated that the sticking of the beads depends on the type, amount, and adsorption symmetry of adsorbed polyelectrolyte. Low, incomplete polyelectrolyte coverage always enhances sticking, whereas for high coverage the symmetry of the polyelectrolyte coating is very important. In this case, sticking (adhesion) is enhanced if only one surface is covered with polyelectrolyte prior to contact. If both surfaces were fully covered with polyelectrolytes before contact, sticking (adhesion) is decreased.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号