首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computational calculations of pKa values of imidazole in Cu(II) complexes of biological relevance
Authors:Alí-Torres Jorge  Rodríguez-Santiago Luis  Sodupe Mariona
Institution:Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
Abstract:The imidazole ring is part of the lateral chain of histidine. One of the main features of this amino acid is the ability to coordinate copper, especially Cu(2+), because of the intermediate base nature of its imidazole ring, which has a great biological relevance. Proteins such as cytochrome c oxidase, a crucial enzyme in the respiratory chain, and β-amyloid peptide, implicated in the pathology of Alzheimer's disease, are examples of proteins containing histidines in their coordination sphere. Several studies indicate that the presence of this metal ion produces a decrease in the pK(a) of the imidazole ring of histidine. However, there are no reports of systematic studies of pK(a) variation in these types of metal cation complexes. In this work we use density functional theory to study the dependence of imidazole pK(a) with the number of imidazole rings in Cu(2+) coordination environments. The pK(a) of isolated imidazole (ImH), and the pK(a) of imidazole in Cu(2+)(ImH)(m)(H(2)O)(4-m) (m=1-3) complexes have been studied using two different functionals, B3LYP and MPWB1K, which have different percentage of exact exchange, and the highly-correlated CCSD(T) method. Results show that imidazole pK(a) decreases between 2 and 7 units depending on the method employed and the number of imidazole rings coordinating the metal cation. Taking into account that the pK(a) of imidazole is 14, this decrease could be relevant in biological processes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号