首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanochemical synthesis in copper(II) halide/pyridine systems: single crystal X-ray diffraction and IR spectroscopic studies
Authors:Bowmaker Graham A  Di Nicola Corrado  Pettinari Claudio  Skelton Brian W  Somers Neil  White Allan H
Institution:Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand.
Abstract:Whereas complexes of divalent metal halides (X = Cl, Br, I) with/from pyridine commonly crystallise as trans-M(py)(4)X(2)]·2py, M on a site of 222 symmetry in space group Ccca, true for CuCl(2) and CuBr(2) in particular, the copper(II) iodide adduct is of the form Cu(py)(4)I]I·2py, Cu on a site of mm2 symmetry in space group Cmcm, and five-coordinate (square-pyramidal), the same cationic species also being found in 2Cu(py)(4)I](I(3))·(py)(2)Cu(μ-I)(2)Cu(py)(2)] (structurally defined). Bromide or N-thiocyanate may be substituted for the unbound iodide ion in the solvated salt, resulting in complexes which crystallize in space group Ccca, but with both anions and the metal atom disordered. In Cu(py)(4)(I(3))(2)], a pair of long Cu···I contacts approach a square-planar Cu(py)(4) array. Assignments of the ν(CuN) and ν(CuX) (X = Br, I, SCN) bands in the far-IR spectra are made, the latter with the aid of analogous assignments for Cu(py)(2)X(2)] (X = Cl, Br), which show a dependence of ν(CuX) on the Cu-X bond length that is very similar to that determined previously for copper(i) halide complexes. The structure of the adventitious complex (trans-)(H(2)O)(py)(4)CuClCu(py)(4)](I(3))(3)·H(2)O is also recorded, with six- and five-coordinate copper atoms; rational synthesis provides {Cu(py)(4)}(2)(μ-Cl)](I(3))(3)·H(2)O with one water molecule less. In {Cu(py)(4)Cl}((∞|∞))](I(3))·3py, square pyramidal Cu(py)(4)Cl](+) cations, assisted by Cl···Cu interactions, stack to give rise to infinite polymeric strings. Several of these compounds were prepared mechanochemically, illustrating the applicability of this method to syntheses involving redox reactions as well as to complex syntheses involving up to five components. The totality of results demonstrates that the Cu(II)(py)(4)] entity can be stabilized in an unexpectedly diverse range of mononuclear and multinuclear complexes through the presence of lattice pyridine molecules, the bulky triiodide ion, or a combination of both.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号