首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical analysis of laminar film condensation in a rotating cylinder with a scraper
Authors:S W Peng
Institution:(1) Department of Mechanical Engineering University of Saskatchewan, 57 Campus Drive Saskatioon Saskatchewan 57N 5A9, Canada, CA
Abstract:The rimming film condensation on the inside wall of a rotating cylinder with a scraper is analyzed. The whole cylinder is divided into two regions, one is the so-called boundary layer region where the radial velocity of the condensate is much smaller than the peripheric velocity so that the boundary layer theory is assumed to be valid; the other is the scraper region where because of the disturbance of the scraper the boundary layer theory does not apply. The boundary layer integral method in the boundary layer region coupling with the integral momentum theorem across the scraper region provides a method to determine the velocity, temperature, and film thickness distributions, and heat transfer coefficients. An extensive discussion about the previous models is given. The sublayer flow rate constancy principle and the variability principle of the boundary layer thickness (therefore the interface velocity) at the scraper position with respect to the rotational speed are proposed. The present model greatly improved the prediction of the average heat transfer coefficient. Received on 5 January 1998
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号