首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interaction between adenosine triphosphate and mechanically induced modulation of electrically evoked otoacoustic emissions
Authors:Kirk Desmond L
Institution:Department of Physiology, The University of Western Australia, Crawley, Australia.
Abstract:It was shown previously that electrically evoked otoacoustic emissions (EEOAEs) can be amplitude modulated by low-frequency bias tones and enhanced by application of adenosine triphosphate (ATP) to scala media. These effects were attributed, respectively, to the mechano-electrical transduction (MET) channels and ATP-gated ion channels on outer hair cell (OHC) stereocilia, two conductance pathways that appear to be functionally independent and additive in their effects on ionic current through the OHC. In the experiments described here, the separate influences of ATP and MET channel bias on EEOAEs did not combine linearly. Modulated EEOAEs increased in amplitude, but lost modulation at the phase and frequency of the bias tone (except at very high sound levels) after application of ATP to scala media, even though spectral components at the modulation sideband frequencies were still present. Some sidebands underwent phase shifts after ATP. In EEOAEs modulated by tones at lower sound levels, substitution of the original phase values restored modulation to the waveform, which then resembled a linear summation of the separate effects of ATP and low-frequency bias. While the physiological meaning of this procedure is not clear, the result raises the possibility that a secondary effect of ATP on one or more nonlinear stages in the transduction process, which may have caused the phase shifts, obscured linear summation at lower sound levels. In addition, "acoustic enhancement" of the EEOAE may have introduced nonlinear interaction at higher levels of the bias tones.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号