首页 | 本学科首页   官方微博 | 高级检索  
     检索      


(29)Si NMR shifts and relative stabilities calculated for hypercoordinated silicon-polyalcohol complexes: role in sol-gel and biogenic silica synthesis
Authors:Sahai Nita  Tossell John A
Institution:Department of Geology and Geophysics, University of Wisconsin, 1215 West Dayton Street, Madison, Wisconsin 53706, USA. sahai@geology.wisc.edu
Abstract:Penta- and hexa-coordinated silicon is rare, occurring as a transient species in some glasses, nonaqueous organosilicon solutions and organosilicon gels such as silicone, and is stable at high pressures within the earth in dense phases such as stishovite. The stable form expected in aqueous solution is quadra-coordinated silicon. A recent study proposed the existence of hypercoordinated silicon-polyalcohol complexes in aqueous solution, based on (29)Si NMR shifts at -102 to -103 ppm and -145 to -147 ppm. Here, we report ab initio molecular orbital calculations of (29)Si NMR chemical shifts and relative stabilities of silicon-polyalcohol monocyclic and spirocyclic complexes, from ethylene glycol (C(2)H(6)O(2)) to arabitol (C(5)H(12)O(5)) with Si in quadra-, penta- and hexa-coordination ((Q)Si, (P)Si, (H)Si), calculated at the HF/6-311+G(2d,p)//HF/6-31G* level. Calculated shifts are accurate with a 1-8% error for (Q)Si and 2-9% for (P)Si. Shifts calculated for the hypercoordinated silicon complexes having structures proposed in the literature are much more negative (-128 and -180 ppm for (P)Si and (H)Si) than observed. We propose that cyclic trimers complexed by polyalcohols can explain the -102 ppm shift, where the Si atoms are all (Q)Si, or where two silicons are (Q)Si and one is (P)Si with rapid exchange between the Si sites. The -145 ppm resonance results from structures similar to those proposed in the experimental NMR study for the -102 ppm peak. Our relative stability calculations indicate that structures proposed in the literature for hypercoordinated silicon complexes are thermodynamically unstable in aqueous solution at acidic to neutral conditions but may exist in degrading silicone-gel breast-implants. Thus, aqueous hypercoordinated silicon-polyalcohol complexes are unlikely to play an important role in biological silicon uptake and hold little promise for novel silica synthesis routes from aqueous solutions under nonextreme conditions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号