首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Particle trajectories under interactions between solitary waves and a linear shear current
Institution:Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190,China;School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:This paper is concerned with particle trajectories beneath solitary waves when a linear shear current exists. The fluid is assumed to be incompressible and inviscid, lying on a flat bed. Classical asymptotic expansion is used to obtain a Korteweg-de Vries(Kd V) equation, then a forth-order Runge-Kutta method is applied to get the approximate particle trajectories. On the other hand, our particular attention is paid to the direct numerical simulation(DNS) to the original Euler equations. A conformal map is used to solve the nonlinear boundary value problem. Highaccuracy numerical solutions are then obtained through the fast Fourier transform(FFT) and compared with the asymptotic solutions, which shows a good agreement when wave amplitude is small. Further, it also yields that there are different types of particle trajectories. Most surprisingly,periodic motion of particles could exist under solitary waves, which is due to the wave-current interaction.
Keywords:Particle trajectories  Linear shear current  Solitary waves  Direct numerical simulation
本文献已被 CNKI 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号