首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spectra and structure of small ring compounds: Part XXXVIII. Cyclobutanol
Authors:JR Durig  GA Guirgis  WE Bucy  DAC Compton  VF Kalasinsky
Institution:Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208 U.S.A.;Department of Chemistry, Mississippi State University, Mississippi State, MississippiU.S.A.
Abstract:The Raman spectrum of gaseous cyclobutanol has been recorded and the far infrared spectrum of the gas has been obtained at a resolution of 0.5 cm?1. At least six Q-branches arising from the low frequency ring-puckering motion have been observed and assigned on the basis of a potential of the form V(X) = (6.32 ± 0.21) × 105X4?(4.18 ± 0.04) × 104X2+ (8.81 ± 1.20) × 103X3 with a reduced mass of 170 amu. An energy difference between the equatorial and axial forms was found to be 50–150 cm?1 with the equatorial being more stable and a barrier of 700–900 cm?1 was found for the interconversion. Three O-H stretching modes were observed in the Raman spectrum. It is concluded that the O-H moiety has both the gauche and trans conformations present in the equatorial form but only the gauche conformer is present in the axial form of the ring. Three O-H torsional modes were observed at 244 (trans conformer), 226.5 and 181.5 cm?1 (gauche conformer) for the equatorial form and one O-H torsion at 237.5 cm?1 (gauche conformer) for the axial form. The potential function governing the O-H torsional motion for the equatorial form was found to be V1 = 280 ± 7 cm?1 (800 cal mole?1) and V3 = 425 ± 3 cm? (121.5 cal mole?1) with the trans conformer being more stable than the gauche by approximately 206 cm?1 (589 cal mole?). The barriers to trans-gauche and gauche-gauche interconversion have essentially the same values, 500 cm?1 (1430 cal mole?1).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号