首页 | 本学科首页   官方微博 | 高级检索  
     检索      


LIMIT-CYCLE STABILITY REVERSAL NEAR A HOPF BIFURCATION WITH AEROELASTIC APPLICATIONS
Authors:D DESSIF MASTRODDI  L MORINO
Institution:
  • a INSEAN, via di Vallerano 139, 00128, Rome, Italyf1d.dessi@insean.itf1
  • b Aerospace Department, University of Rome “La Sapienza” via Eudossiana, 16, I-00184, Rome, Italyf2franco@mastroddi.ing.uniroma1.itf2
  • c Department of Mechanical and Industrial Engineering, University of Rome “Roma Tre” Via della Vasca Navale, 79, Rome, Italyf3L.Morino@uniroma3.itf3
  • Abstract:The objective of this paper is to present an analytical/numerical analysis of the phenomenon of limit-cycle stability reversal (from unstable to stable, and vice versa). A singular perturbation technique, the method of the normal form (in the asymptotic- expansion version), is utilized. The number of equations is then reduced to a “minimal set”, for which the results are in good agreement with those from the original equations. This minimal set is determined by the amplitude of the λ̂-points (a concept closely related to the small divisors in the KAM theory). This set is larger than that corresponding to the zero real-part eigenvalues (center-manifold theorem). The method is applied to a specific problem: an aeroelastic section with cubic free-play non-linearities where the parameter μ is the flight speed. Numerical studies have been performed to show the dependence of the Hopf bifurcation characteristics upon the structural and geometric properties of the wing section. Plots depicting amplitudes and frequency versus flight speed are presented.
    Keywords:
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号