首页 | 本学科首页   官方微博 | 高级检索  
     


Elastic properties of model random three-dimensional open-cell solids
Authors:A.P. Roberts  E.J. Garboczi
Affiliation:a Building Materials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
b Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland 4072, Australia
Abstract:Most cellular solids are random materials, while practically all theoretical structure-property relations are for periodic models. To generate theoretical results for random models the finite element method (FEM) was used to study the elastic properties of open-cell solids. We have computed the density (ρ) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (ν) for four different isotropic random models. The models were based on Voronoi tessellations, level-cut Gaussian random fields, and nearest neighbour node-bond rules. These models were chosen to broadly represent the structure of foamed solids and other (non-foamed) cellular materials. At low densities, the Young's modulus can be described by the relation Eρn. The exponent n and constant of proportionality depend on microstructure. We find 1.3<n<3, indicating a more complex dependence than indicated by periodic cell theories, which predict n=1 or 2. The observed variance in the exponent was found to be consistent with experimental data. At low densities we found that ν≈0.25 for three of the four models studied. In contrast, the Voronoi tessellation, which is a common model of foams, became approximately incompressible (ν≈0.5). This behaviour is not commonly observed experimentally. Our studies showed the result was robust to polydispersity and that a relatively large number (15%) of the bonds must be broken to significantly reduce the low-density Poission's ratio to ν≈0.33.
Keywords:Structure-property relationships   A. Microstructures   B. Foam material   C. Finite elements   C. Probability and statistics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号