首页 | 本学科首页   官方微博 | 高级检索  
     


Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: II—applications
Authors:Pedro Ponte Castañ  eda
Affiliation:Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315, USA
Abstract:In Part I of this work, an improved “second-order” homogenization theory was developed. This new theory makes use of generalized secant moduli that are intermediate between the standard secant and tangent moduli of the nonlinear phases, and that depend not only on the averages, or first-moments of the fields in the phases, but also on the second-moments of the field fluctuations, or phase covariance tensors. In this article, the theory, which is known to be exact to second-order in the heterogeneity contrast, is applied to the special cases of rigidly reinforced and porous materials. These are cases corresponding to infinite contrast where fairly explicit analytical expressions of the Hashin-Shtrikman and self-consistent-type may be generated for nonlinear composites. The results show that the new theory improves on the earlier theory (Ponte Castañeda, J. Mech. Phys. Solids 44 (1996) 827) in at least two ways. First, the new theory satisfies rigorous bounds, even near the percolation limit, where field fluctuations become important, and the earlier second-order theory had been found to fail. Second, the new theory predicts fully compressible behavior for porous materials with an incompressible matrix phase, where the earlier theory had also been found to fail. In addition, the new estimates are found to be in better agreement with numerical simulations available from the literature.
Keywords:A. Voids and inclusions   B. Anisotropic material   Porous material   Viscoplastic material   C. Variational calculus
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号