首页 | 本学科首页   官方微博 | 高级检索  
     


Construction of stable multivariate calibration models using unsupervised segmented principal component regression
Authors:Bahram Hemmateenejad  Sadegh Karimi
Abstract:In multivariate spectral calibration by principal component regression (PCR), the principal components (PCs) are calculated from the response data measured at all employed instrument channels; however some channels are redundant and their responses do not possess useful information. Thus, the extracted PCs possess mixed information from both useful and redundant channels. In this work, we propose a segmentation approach based on unsupervised pattern recognition to identify the most informative spectral region and then to construct a stable multivariate calibration model by PCR. In this method, the instrument channels are clustered into different segments via Kohonen self‐organization map. The spectral data of each segment are then subjected to PCA and the derived PCs are used as input variables for an inverse least square (ILS) regression model employing stepwise selection of the informative PCs. The proposed method was evaluated by the analysis of four simulated and six experimental data sets. It was found that our proposed method can model the above data sets with prediction errors lower than conventional partial least squares (PLS) and PCR methods. In addition, the prediction ability of our method was better than the previously reported models for these data sets. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:multivariate calibration  principal component regression  segmented PCR  clustering  self‐organization map
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号