首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multiple Internal Resonance in Suspended Cables under Random In-Plane Loading
Authors:Chang  W K  Ibrahim  R A
Institution:(1) Department of Mechanical Engineering, Wayne State University, Detroit, MI, 48202, U.S.A
Abstract:The random excitation of a suspended cable with simultaneous internal resonances is considered. The internal resonances can take place among the first in-plane and the first two out-of-plane modes. The external loading is represented by a wide-band random process. The response statistics are estimated using the Fokker-Planck-Kolmogorov (FPK) equation, together with Gaussian and non-Gaussian closures. Monte Carlo simulation is also used for numerical verification. The unimodal in-plane motion exists in regions away from the internal resonance condition. The mixed mode interaction is manifested within a limited range of internal detuning parameters, depending on the excitation power spectrum density and damping ratios. The Gaussian closure scheme failed to predict bounded solutions of mixed mode interaction. The non-Gaussian closure results are in good agreement with the Monte Carlo simulation. The on-off intermittency of the autoparametrically excited modes is observed in the Monte Carlo simulation over a small range of excitation levels. The influence of the cable parameters, such as damping ratios, sag-to-span ratio, internal detuning parameters, and excitation level on the autoparametric interaction, is studied. It is found that the internal detuning and excitation level are the two main parameters which affect the autoparametric interaction among the three modes. Due to the system's nonlinearity, the response of the three modes is strongly non-Gaussian and the coupled modes experience irregular modulation.
Keywords:Suspended cables  internal resonances  intermittency  random excitation  closure schemes  Monte Carlo simulation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号