首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Time-dependent four-component relativistic density functional theory for excitation energies
Authors:Gao Jun  Liu Wenjian  Song Bo  Liu Chengbu
Institution:Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China.
Abstract:Time-dependent four-component relativistic density functional theory within the linear response regime is developed for calculating excitation energies of heavy element containing systems. Since spin is no longer a good quantum number in this context, we resort to time-reversal adapted Kramers basis when deriving the coupled Dirac-Kohn-Sham equation. The particular implementation of the formalism into the Beijing density functional program package utilizes the multipolar expansion of the induced density to facilitate the construction of the induced Coulomb potential. As the first application, pilot calculations on the valence excitation energies and fine structures of the rare gas (Ne to Rn) and Group 12 (Zn to Hg) atoms are reported. To the best of our knowledge, it is the first time to be able to account for spin-orbit coupling within time-dependent density functional theory for excitation energies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号