首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Energy transfer between chlorophyll derivatives in silica mesostructured films and photocurrent generation
Authors:Furukawa Hiroyasu  Inoue Natsuka  Watanabe Tadashi  Kuroda Kazuyuki
Institution:Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan. furukawa@umich.edu
Abstract:Layered silica/surfactant mesostructured thin films containing chlorophyllous pigments C13(2)-demethoxycarbonyl-pheophytin b (pyroPheo b) or zinc C13(2)-demethoxycarbonyl-chlorophyll b (Zn-pyroChl b)] have been prepared on an indium tin oxide (ITO) electrode grafted with a chlorophyll derivative possessing a triethoxysilyl group (copper C13(2)-demethoxycarbonyl-chlorophyllide a 3-triethoxysilyl propylamide, Cu-APTES-Chl a) to achieve effective light harvesting and successive photocurrent generation by the mesostructured films. The incorporation of pyroPheo b and Zn-pyroChl b in the mesostructured film resulted in 1.2- and 1.6-fold increases of the photocurrent density, respectively, as compared to the case of an antenna pigment-free film also grafted to a surface-modified ITO electrode. The difference action spectra, between the electrodes with and without the antenna pigments, coincided well with the absorption spectra of the immobilized pigments. Because direct electron injection from the antenna pigments in the mesostructured films to the ITO electrode was scarcely observed, the energy transfer from the antenna pigments to Cu-APTES-Chl a plays an important role for the increase in photocurrent density. The usefulness of the mesostructured films as model systems is discussed in relation to the photosynthetic primary processes of higher plants.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号