首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Variational calculations of asymmetric nuclear matter
Authors:IE Lagaris  VR Pandharipande
Institution:Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
Abstract:We report on variational calculations of the energy E(ρ, β) of asymmetric nuclear matter having ? = ?n + ?p = 0.05 to 0.35 fm?3, and β = (?n ? ?p/g9 = 0 to 1. The nuclear h used in this work consists of a realistic two-nucleon interaction, called v14, that fits the available nucleon-nucleon scattering data up to 425 MeV, and a phenomenological three nucleon interaction adjusted to reproduce the empirical properties of symmetric nuclear matter. The variational many-body theory of symmetric nuclear matter is extended to treat matter with neutron excess. Numerical and analytic studies of the β-dependence of various contributions to the nuclear matter energy show that at ? < 0.35 fm?3 the β4 terms are very small, and that the interaction energy EI(ρ, β) defined as E(ρ, β) ? TF(ρ, β), where TF is the Fermi-gas energy, is well approximated by EI0(?) + β2EI2(ρ). The calculated symmetry energy at equilibrium density is 30 MeV and it increases from 15 to 38 MeV as ? increases from 0.05 to 0.35 fm?3.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号